Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.277
Filtrar
1.
J Hazard Mater ; 470: 134227, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581879

RESUMO

Phosphate-mineralizing bacteria (PMBs) have been widely studied by inducing phosphate heavy metal precipitation, but current researches neglect to study their effects on soil-microbe-crop systems on cadmium (Cd) contaminated. Based on this, a strain PMB, Enterobacter sp. PMB-5, was inoculated into Cd contaminated pots to detect soil characteristics, Cd occurrence forms, soil biological activities, plant physiological and biochemical indicators. The results showed that the inoculation of strain PMB-5 significantly increased the available phosphorus content (85.97%-138.64%), Cd-residual fraction (11.04%-29.73%), soil enzyme activities (31.94%-304.63%), plant biomass (6.10%-59.81%), while decreased the state of Cd-HOAc (11.50%-31.17%) and plant bioconcentration factor (23.76%-44.24%). These findings indicated that strain PMB-5 could perform the function of phosphorus solubilization to realize the immobilization of Cd in the complex soil environment. Moreover, SEM-EDS, FTIR, XPS, and XRD analysis revealed that strain PMB-5 does not significantly alter the soil morphology, structure, elemental distribution, and chemical composition, which suggested that remediation of Cd contamination using strain PMB-5 would not further burden the soil. This research implies that PMB-5 could be a safe and effective bioinoculant for remediating Cd-contaminated soils, contributing to the sustainable management of soil health in contaminated environments.


Assuntos
Biodegradação Ambiental , Cádmio , Enterobacter , Fósforo , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Enterobacter/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Fósforo/metabolismo , Fósforo/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Solo/química
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 847-857, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646773

RESUMO

Crop health directly affects yields and food security. At present, agrochemicals such as fertilizers and pesticides are mainly used in agricultural production to promote crop health. However, long-term excessive utilization of agrochemicals will damage the ecological environment of farmlands and increase the safety risk of agricultural products. It is urgent to explore efficient and environment-friendly agricultural products. Rhizosphere microbiome are considered as the second genome of plants, which are closely related to crop health. Understanding the key functional microbes, microbe-microbe interactions, and plant-microbe interactions are fundamental for exploring the potential of beneficial microbes in promoting crop health. However, due to the heterogeneity and complexity of the natural environment, stimulating the function of indigenous microorganisms remains uncertain. Synthetic microbial community (SynCom) is an artificial combination of two or more different strain isolates of microorganisms, with different taxonomic, genetic, or functional characteristic. Because of the advantages of maintaining species diversity and community stability, SynCom has been widely applied in the fields of human health, environmental governance and industrial production, and may also have great potential in promoting crop health. We summarized the concept and research status of SynCom, expounded the principles and methods of constructing SynCom, and analyzed the research on the promotion of crop health by exploring the mechanism of plant-microbe interactions, promoting plant growth and development, and improving stress resistance. Finally, we envisaged the future prospects to guide the using SynCom to improve crop health.


Assuntos
Produtos Agrícolas , Microbiota , Rizosfera , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Microbiologia do Solo , Biologia Sintética/métodos , Agricultura/métodos
3.
mSphere ; 9(4): e0080323, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38567970

RESUMO

Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.


Assuntos
Archaea , Bactérias , Produtos Agrícolas , Fungos , Microbiota , Doenças das Plantas , Microbiologia do Solo , Japão , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Solo/química , Agricultura
4.
Compr Rev Food Sci Food Saf ; 23(2): e13323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477222

RESUMO

Climate change (CC) is a complex phenomenon that has the potential to significantly alter marine, terrestrial, and freshwater ecosystems worldwide. Global warming of 2°C is expected to be exceeded during the 21st century, and the frequency of extreme weather events, including floods, storms, droughts, extreme temperatures, and wildfires, has intensified globally over recent decades, differently affecting areas of the world. How CC may impact multiple food safety hazards is increasingly evident, with mycotoxin contamination in particular gaining in prominence. Research focusing on CC effects on mycotoxin contamination in edible crops has developed considerably throughout the years. Therefore, we conducted a comprehensive literature search to collect available studies in the scientific literature published between 2000 and 2023. The selected papers highlighted how warmer temperatures are enabling the migration, introduction, and mounting abundance of thermophilic and thermotolerant fungal species, including those producing mycotoxins. Certain mycotoxigenic fungal species, such as Aspergillus flavus and Fusarium graminearum, are expected to readily acclimatize to new conditions and could become more aggressive pathogens. Furthermore, abiotic stress factors resulting from CC are expected to weaken the resistance of host crops, rendering them more vulnerable to fungal disease outbreaks. Changed interactions of mycotoxigenic fungi are likewise expected, with the effect of influencing the prevalence and co-occurrence of mycotoxins in the future. Looking ahead, future research should focus on improving predictive modeling, expanding research into different pathosystems, and facilitating the application of effective strategies to mitigate the impact of CC.


Assuntos
Micotoxinas , Micotoxinas/análise , Mudança Climática , Ecossistema , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Produtos Agrícolas/microbiologia
5.
Microb Biotechnol ; 17(3): e14439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478382

RESUMO

Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture. The concept of the plant holobiont, encompassing the plant host and its symbiotic microbiota, underscores the intricate relationships with a diverse microbial community. PGPM, residing in the rhizosphere, phyllosphere, and endosphere, play vital roles in nutrient solubilization, nitrogen fixation, and biocontrol of pathogens. Novel ecological functions, including epigenetic modifications and suppression of virulence genes, extend our understanding of PGPM strategies. The diverse roles of PGPM as biofertilizers, biocontrollers, biomodulators, and more contribute to sustainable agriculture and environmental resilience. Despite fungi's remarkable plant growth-promoting functions, their potential is often overshadowed compared to bacteria. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with many terrestrial plants, enhancing plant nutrition, growth, and stress resistance. Other fungi, including filamentous, yeasts, and polymorphic, from endophytic, to saprophytic, offer unique attributes such as ubiquity, morphology, and endurance in harsh environments, positioning them as exceptional plant growth-promoting fungi (PGPF). Crops frequently face abiotic stresses like salinity, drought, high UV doses and extreme temperatures. Some extremotolerant fungi, including strains from genera like Trichoderma, Penicillium, Fusarium, and others, have been studied for their beneficial interactions with plants. Presented examples of their capabilities in alleviating salinity, drought, and other stresses underscore their potential applications in agriculture. In this context, extremotolerant and extremophilic fungi populating extreme natural environments are muchless investigated. They represent both new challenges and opportunities. As the global climate evolves, understanding and harnessing the intricate mechanisms of fungal-plant interactions, especially in extreme environments, is paramount for developing effective and safe plant probiotics and using fungi as biocontrollers against phytopathogens. Thorough assessments, comprehensive methodologies, and a cautious approach are crucial for leveraging the benefits of extremophilic fungi in the changing landscape of global agriculture, ensuring food security in the face of climate challenges.


Assuntos
Extremófilos , Micorrizas , Simbiose , Fungos/genética , Agricultura/métodos , Produtos Agrícolas/microbiologia
6.
Curr Opin Chem Biol ; 79: 102427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290195

RESUMO

In the rhizosphere, plants and microbes communicate chemically, especially under environmental stress. Over millions of years, plants and their microbiome have coevolved, sharing various chemicals, including signaling molecules. This mutual exchange impacts bacterial communication and influences plant metabolism. Inter-kingdom signal crosstalk affects bacterial colonization and plant fitness. Beneficial microbes and their metabolomes offer eco-friendly ways to enhance plant resilience and agriculture. Plant metabolites are pivotal in this dynamic interaction between host plants and their interacting beneficial microbes. Understanding these associations is key to engineering a robust microbiome for stress mitigation and improved plant growth. This review explores mechanisms behind plant-microbe interactions, the role of beneficial microbes and metabolomics, and the practical applications for addressing climate change's impact on agriculture. Integrating beneficial microbes' activities and metabolomics' application to study metabolome-driven interaction between host plants and their corresponding beneficial microbes holds promise for enhancing crop resilience and productivity.


Assuntos
Microbiota , Resiliência Psicológica , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Bactérias/metabolismo , Metabolômica
7.
Microbiol Res ; 281: 127601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218094

RESUMO

Modern crops might have lost some of their functional traits, required for interacting with beneficial microbes, as a result of the genotypic/phenotypic modifications that occurred during domestication. Here, we studied the bacterial and fungal microbiota in the rhizosphere of two cultivated wheat species (Triticum aestivum and T. durum) and their respective ancestors (Aegilops tauschii and T. dicoccoides), in three experimental fields, by using metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. Moreover, the abundance of bacterial genes involved in N- and P-cycles was estimated by quantitative PCR, and urease, alkaline phosphatase and phosphomonoesterase activities were assessed by enzymatic tests. The relationships between microbiota and environmental metadata were tested by correlation analysis. The assemblage of core microbiota was affected by both site and plant species. No significant differences in the abundance of potential fungal pathogens between wild and cultivated wheat species were found; however, co-occurrence analysis showed more bacterial-fungal negative correlations in the wild species. Concerning functions, the nitrogen denitrification nirS gene was consistently more abundant in the rhizosphere of A. tauschii than T. aestivum. Urease activity was higher in the rhizosphere of each wild wheat species in at least two of the research locations. Several microbiota members, including potentially beneficial taxa such as Lysobacter and new taxa such as Blastocatellaceae, were found to be strongly correlated to rhizospheric soil metadata. Our results showed that a functional microbiome shift occurred as a result of wheat domestication. Notably, these changes also included the reduction of the natural biocontrol potential of rhizosphere-associated bacteria against pathogenic fungi, suggesting that domestication disrupted the equilibrium of plant-microbe relationships that had been established during million years of co-evolution.


Assuntos
Microbiota , Rizosfera , Domesticação , Triticum/microbiologia , RNA Ribossômico 16S/genética , Urease , Microbiota/genética , Bactérias/genética , Solo , Produtos Agrícolas/microbiologia , Microbiologia do Solo , Raízes de Plantas/microbiologia
8.
New Phytol ; 242(4): 1798-1813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155454

RESUMO

It is well understood that agricultural management influences arbuscular mycorrhizal (AM) fungi, but there is controversy about whether farmers should manage for AM symbiosis. We assessed AM fungal communities colonizing wheat roots for three consecutive years in a long-term (> 14 yr) tillage and fertilization experiment. Relationships among mycorrhizas, crop performance, and soil ecosystem functions were quantified. Tillage, fertilizers and continuous monoculture all reduced AM fungal richness and shifted community composition toward dominance of a few ruderal taxa. Rhizophagus and Dominikia were depressed by tillage and/or fertilization, and their abundances as well as AM fungal richness correlated positively with soil aggregate stability and nutrient cycling functions across all or no-tilled samples. In the field, wheat yield was unrelated to AM fungal abundance and correlated negatively with AM fungal richness. In a complementary glasshouse study, wheat biomass was enhanced by soil inoculum from unfertilized, no-till plots while neutral to depressed growth was observed in wheat inoculated with soils from fertilized and conventionally tilled plots. This study demonstrates contrasting impacts of low-input and conventional agricultural practices on AM symbiosis and highlights the importance of considering both crop yield and soil ecosystem functions when managing mycorrhizas for more sustainable agroecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Fertilizantes , Micorrizas , Microbiologia do Solo , Solo , Triticum , Micorrizas/fisiologia , Solo/química , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Biomassa , Raízes de Plantas/microbiologia , Fatores de Tempo , Biodiversidade
9.
World J Microbiol Biotechnol ; 40(1): 27, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057541

RESUMO

Chernevaya taiga of Western Siberia, Russia, is a unique ecosystem characterized by fertile soil, exceptionally large herbaceous plant sizes, and extraordinarily rapid rates of plant residue degradation. We expected that growing crops on soil collected from Chernevaya taiga, which has never been used for agricultural purposes before, would result in a distinct rhizospheric fungal community. This community could potentially yield novel, potent biostimulators and biocontrol fungi for modern agriculture. To check this idea, we used high-throughput ITS sequencing to examine the microbial communities in the rhizosphere of spring wheat and radish grown in greenhouse experiments on Chernevaya and control soils. Additionally, representative fungal strains were isolated and assessed for their ability to promote growth in wheat seedlings. The study revealed that the most abundant phyla in the rhizospheric fungal community were Mortierellomycota, primarily consisting of Mortierella species, and Ascomycota. Mucor and Umbelopsis comprised the majority of Mucoromycota in the control soils. Fusarium and Oidiodendron, two potentially plant-pathogenic fungi, were only found in the rhizosphere of crops grown in the control soil. Conversely, Chernevaya soil contained a diverse range of potential biocontrol fungi for plants. Tested novel fungal isolates showed a stimulating effect on the development of wheat seedlings and positively affected their rate of biomass accumulation. The results of the study demonstrate that the soil of Chernevaya taiga do indeed contain fungi with prominent potential to stimulate agricultural plants growth.


Assuntos
Ascomicetos , Microbiota , Micobioma , Solo/química , Rizosfera , Produtos Agrícolas/microbiologia , Taiga , Fungos/genética , Microbiologia do Solo , Raízes de Plantas/microbiologia
10.
Microbiol Spectr ; 11(6): e0178623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811990

RESUMO

IMPORTANCE: Soybean yield can be affected by soybean soil fungal communities in different tillage patterns. Soybean is an important food crop with great significance worldwide. Continuous cultivation resulted in soil nutrient deficiencies, disordered metabolism of root exudates, fungal pathogen accumulation, and an altered microbial community, which brought a drop in soybean output. In this study, taking the soybean agroecosystem in northeast China, we revealed the microbial ecology and soil metabolites spectrum, especially the diversity and composition of soil fungi and the correlation of pathogenic fungi, and discussed the mechanisms and the measures of alleviating the obstacles.


Assuntos
Micobioma , Solo , Rizosfera , Microbiologia do Solo , Produtos Agrícolas/microbiologia
11.
PeerJ ; 11: e15525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397024

RESUMO

Backgorund: The production of red fruits, such as blueberry, has been threatened by several stressors from severe periods of drought, nutrient scarcity, phytopathogens, and costs with fertilization programs with adverse consequences. Thus, there is an urgent need to increase this crop's resilience whilst promoting sustainable agriculture. Plant growth-promoting microorganisms (PGPMs) constitute not only a solution to tackle water and nutrient deficits in soils, but also as a control against phytopathogens and as green compounds for agricultural practices. Methods: In this study, a metagenomic approach of the local fungal and bacterial community of the rhizosphere of Vaccinium corymbosum plants was performed. At the same time, both epiphytic and endophytic microorganisms were isolated in order to disclose putative beneficial native organisms. Results: Results showed a high relative abundance of Archaeorhizomyces and Serendipita genera in the ITS sequencing, and Bradyrhizobium genus in the 16S sequencing. Diversity analysis disclosed that the fungal community presented a higher inter-sample variability than the bacterial community, and beta-diversity analysis further corroborated this result. Trichoderma spp., Bacillus spp., and Mucor moelleri were isolated from the V. corymbosum plants. Discussion: This work revealed a native microbial community capable of establishing mycorrhizal relationships, and with beneficial physiological traits for blueberry production. It was also possible to isolate several naturally-occurring microorganisms that are known to have plant growth-promoting activity and confer tolerance to hydric stress, a serious climate change threat. Future studies should be performed with these isolates to disclose their efficiency in conferring the needed resilience for this and several crops.


Assuntos
Mirtilos Azuis (Planta) , Micorrizas , Mirtilos Azuis (Planta)/microbiologia , Rizosfera , Portugal , Micorrizas/fisiologia , Produtos Agrícolas/microbiologia , Bactérias
12.
PeerJ ; 11: e15428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334112

RESUMO

Climate change may lead to adverse effects on agricultural crops, plant microbiomes have the potential to help hosts counteract these effects. While plant-microbe interactions are known to be sensitive to temperature, how warming affects the community composition and functioning of plant microbiomes in most agricultural crops is still unclear. Here, we utilized a 10-year field experiment to investigate the effects of warming on root zone carbon availability, microbial activity and community composition at spatial (root, rhizosphere and bulk soil) and temporal (tillering, jointing and ripening stages of plants) scales in field-grown wheat (Triticum aestivum L.). The dissolved organic carbon and microbial activity in the rhizosphere were increased by soil warming and varied considerably across wheat growth stages. Warming exerted stronger effects on the microbial community composition in the root and rhizosphere samples than in the bulk soil. Microbial community composition, particularly the phyla Actinobacteria and Firmicutes, shifted considerably in response to warming. Interestingly, the abundance of a number of known copiotrophic taxa, such as Pseudomonas and Bacillus, and genera in Actinomycetales increased in the roots and rhizosphere under warming and the increase in these taxa implies that they may play a role in increasing the resilience of plants to warming. Taken together, we demonstrated that soil warming along with root proximity and plant growth status drives changes in the microbial community composition and function in the wheat root zone.


Assuntos
Microbiota , Triticum , Microbiologia do Solo , Solo , Bactérias , Produtos Agrícolas/microbiologia
14.
Curr Microbiol ; 80(6): 192, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101055

RESUMO

The quest for increasing agricultural yield due to increasing population pressure and demands for healthy food has inevitably led to the indiscriminate use of chemical fertilizers. On the contrary, the exposure of the crops to abiotic stress and biotic stress interferes with crop growth further hindering the productivity. Sustainable agricultural practices are of major importance to enhance production and feed the rising population. The use of plant growth promoting (PGP) rhizospheric microbes is emerging as an efficient approach to ameliorate global dependence on chemicals, improve stress tolerance of plants, boost up growth and ensure food security. Rhizosphere associated microbiomes promote the growth by enhancing the uptake of the nutrients, producing plant growth regulators, iron chelating complexes, shaping the root system under stress conditions and decreasing the levels of inhibitory ethylene concentrations and protecting plants from oxidative stress. Plant growth-promoting rhizospheric microbes belong to diverse range of genera including Acinetobacter, Achromobacter, Aspergillus, Bacillus, Burkholderia, Flavobacterium, Klebsiella, Micrococcus, Penicillium, Pseudomonas, Serratia and Trichoderma. Plant growth promoting microbes are an interesting aspect of research for scientific community and a number of formulations of beneficial microbes are also commercially available. Thus, recent progress in our understanding on rhizospheric microbiomes along with their major roles and mechanisms of action under natural and stressful conditions should facilitate their application as a reliable component in the management of sustainable agricultural system. This review highlights the diversity of plant growth promoting rhizospheric microbes, their mechanisms of plant growth promotion, their role under biotic and abiotic stress and status of biofertilizers. The article further focuses on the role of omics approaches in plant growth promoting rhizospheric microbes and draft genome of PGP microbes.


Assuntos
Agricultura , Microbiota , Agricultura/métodos , Produtos Agrícolas/microbiologia , Reguladores de Crescimento de Plantas , Biodiversidade , Microbiologia do Solo
15.
Microb Cell Fact ; 22(1): 50, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915090

RESUMO

BACKGROUND: The lipopeptide herbicolin A (HA) secreted by the biocontrol agent Pantoea agglomerans ZJU23 is a promising antifungal drug to combat fungal pathogens by targeting lipid rafts, both in agricultural and clinical settings. Improvement of HA production would be of great significance in promoting its commercialization. This study aims to enhance the HA production in ZJU23 by combining fermentation optimization and strain engineering. RESULTS: Based on the results in the single-factor experiments, corn steep liquor, temperature and initial pH were identified as the significant affecting factors by the Plackett-Burman design. The fermentation medium and conditions were further optimized using the Box-Behnken response surface method, and the HA production of the wild type strain ZJU23 was improved from ~ 87 mg/mL in King's B medium to ~ 211 mg/mL in HA induction (HAI) medium. A transposon library was constructed in ZJU23 to screen for mutants with higher HA production, and two transcriptional repressors for HA biosynthesis, LrhA and PurR, were identified. Disruption of the LrhA gene led to increased mRNA expression of HA biosynthetic genes, and subsequently improved about twofold HA production. Finally, the HA production reached ~ 471 mg/mL in the ΔLrhA mutant under optimized fermentation conditions, which is about 5.4 times higher than before (~ 87 mg/mL). The bacterial suspension of the ΔLrhA mutant fermented in HAI medium significantly enhanced its biocontrol efficacy against gray mold disease and Fusarium crown rot of wheat, showing equivalent control efficacies as the chemical fungicides used in this study. Furthermore, HA was effective against fungicide resistant Botrytis cinerea. Increased HA production substantially improved the control efficacy against gray mold disease caused by a pyrimethanil resistant strain. CONCLUSIONS: This study reveals that the transcriptional repressor LrhA negatively regulates HA biosynthesis and the defined HAI medium is suitable for HA production. These findings provide an extended basis for large-scale production of HA and promote biofungicide development based on ZJU23 and HA in the future.


Assuntos
Antifúngicos , Agentes de Controle Biológico , Reatores Biológicos , Fermentação , Engenharia Genética , Pantoea , Pantoea/classificação , Pantoea/efeitos dos fármacos , Pantoea/genética , Pantoea/metabolismo , Fermentação/efeitos dos fármacos , Fermentação/genética , Engenharia Genética/métodos , Antifúngicos/metabolismo , Agentes de Controle Biológico/metabolismo , Temperatura , Concentração de Íons de Hidrogênio , Regulação Bacteriana da Expressão Gênica , Meios de Cultura/química , Meios de Cultura/farmacologia , Análise de Regressão , Análise de Variância , Reprodutibilidade dos Testes , Proteínas Repressoras/antagonistas & inibidores , Micoses/prevenção & controle , Micoses/terapia , Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/terapia , Humanos , Animais
16.
Microbiol Res ; 271: 127340, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36889205

RESUMO

Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.


Assuntos
Microbiologia do Solo , Solo , Humanos , Solo/química , Agricultura , Produção Agrícola , Produtos Agrícolas/microbiologia , Enxofre , Compostos de Enxofre , Fertilizantes/microbiologia
17.
World J Microbiol Biotechnol ; 39(4): 100, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36792799

RESUMO

Plant growth-promoting rhizobacteria (PGPR) have multifarious beneficial activities for plant growth promotion; act as source of metabolites, enzymes, nutrient mobilization, biological control of pests, induction of disease resistance vis-a-vis bioremediation potentials by phytoextraction and detoxification of heavy metals, pollutants and pesticides. Agrochemicals and synthetic pesticides are currently being utilized widely in all major field crops, thereby adversely affecting human and animal health, and posing serious threats to the environments. Beneficial microorganisms like PGPR could potentially substitute and supplement the toxic chemicals and pesticides with promising application in organic farming leading to sustainable agriculture practices and bioremediation of heavy metal contaminated sites. Among field crops limited bio-formulations have been prepared till now by utilization of PGPR strains having plant growth promotion, metabolites, enzymes, nutrient mobilization and biocontrol activities. The present review contributes comprehensive description of PGPR applications in field crops including commercial, oilseeds, leguminous and cereal crops to further extend the utilization of these potent groups of beneficial microorganisms so that even higher level of crop productivity and quality produce of field crops could be achieved. PGPR and bacteria based commercialized bio-formulations available worldwide for its application in the field crops have been compiled in this review which can be a substitute for the harmful synthetic chemicals. The current knowledge gap and potential target areas for future research have also been projected.


Assuntos
Alphaproteobacteria , Metais Pesados , Praguicidas , Humanos , Bactérias , Produtos Agrícolas/microbiologia , Verduras , Agricultura , Desenvolvimento Vegetal , Praguicidas/farmacologia
18.
Appl Environ Microbiol ; 89(1): e0131422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36629416

RESUMO

Oomycetes are critically important in soil microbial communities, especially for agriculture, where they are responsible for major declines in yields. Unfortunately, oomycetes are vastly understudied compared to bacteria and fungi. As such, our understanding of how oomycete biodiversity and community structure vary through time in the soil remains poor. Soil history established by previous crops is one factor known to structure other soil microbes, but this has not been investigated for its influence on oomycetes. In this study, we established three different soil histories in field trials; the following year, these plots were planted with five different Brassicaceae crops. We hypothesized that the previously established soil histories would structure different oomycete communities, regardless of their current Brassicaceae crop host, in both the roots and rhizosphere. We used a nested internal transcribed spacer amplicon strategy incorporated with MiSeq metabarcoding, where the sequencing data was used to infer amplicon sequence variants of the oomycetes present in each sample. This allowed us to determine the impact of different soil histories on the structure and biodiversity of the oomycete root and rhizosphere communities from the five different Brassicaceae crops. We found that each soil history structured distinct oomycete rhizosphere communities, regardless of different Brassicaceae crop hosts, while soil chemistry structured the oomycete communities more during a dry year. Interestingly, soil history appeared specific to oomycetes but was less influential for bacterial communities previously identified from the same samples. These results advance our understanding of how different agricultural practices and inputs can alter edaphic factors to impact future oomycete communities. Examining how different soil histories endure and impact oomycete biodiversity will help clarify how these important communities may be assembled in agricultural soils. IMPORTANCE Oomycetes cause global plant diseases that result in substantial losses, yet they are highly understudied compared to other microbes, like fungi and bacteria. We wanted to investigate how past soil events, like changing crops in rotation, would impact subsequent oomycete communities. We planted different oilseed crops in three different soil histories and found that each soil history structured a distinct oomycete community regardless of which new oilseed crop was planted, e.g., oomycete communities from last year's lentil plots were still detected the following year regardless of which new oilseed crops we planted. This study demonstrated how different agricultural practices can impact future microbial communities differently. Our results also highlight the need for continued monitoring of oomycete biodiversity and quantification.


Assuntos
Oomicetos , Solo , Solo/química , Oomicetos/genética , Agricultura/métodos , Fungos/genética , Produtos Agrícolas/microbiologia , Rizosfera , Produção Agrícola , Microbiologia do Solo
19.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36626768

RESUMO

AIMS: Assess bacterial community changes over time in soybean (Glycine max) crop fields following cover crop (CC) and no-till (NT) implementation under natural abiotic stressors. METHOD AND RESULTS: Soil bacterial community composition was obtained by amplifying, sequencing, and analysing the V4 region of the 16S rRNA gene. Generalized linear mixed models were used to assess the effects of tillage, CC, and time on bacterial community response. The most abundant phyla present were Acidobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia. Bacterial diversity increased in periods with abundant water. Reduced tillage (RT) increased overall bacterial diversity, but NT with a CC was not significantly different than RT treatments under drought conditions. CCs shifted abundances of Firmicutes and Bacteroidetes depending on abiotic conditions. CONCLUSIONS: In the Lower Mississippi Alluvial Valley (LMAV), USA, NT practices lower diversity and influence long-term community changes while cover crops enact a seasonal response to environmental conditions. NT and RT management affect soil bacterial communities differently than found in other regions of the country.


Assuntos
Microbiologia do Solo , Solo , RNA Ribossômico 16S/genética , Mississippi , Agricultura , Bactérias/genética , Bacteroidetes/genética , Produtos Agrícolas/microbiologia
20.
Microb Ecol ; 86(1): 1-24, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35604432

RESUMO

Several fungi act as parasites for crops causing huge annual crop losses at both pre- and post-harvest stages. For years, chemical fungicides were the solution; however, their wide use has caused environmental contamination and human health problems. For this reason, the use of biofungicides has been in practice as a green solution against fungal phytopathogens. In the context of a more sustainable agriculture, microbial biofungicides have the largest share among the commercial biocontrol products that are available in the market. Precisely, the genus Bacillus has been largely studied for the management of plant pathogenic fungi because they offer a chemically diverse arsenal of antifungal secondary metabolites, which have spawned a heightened industrial engrossment of it as a biopesticide. In this sense, it is indispensable to know the wide arsenal that Bacillus genus has to apply these products for sustainable agriculture. Having this idea in our minds, in this review, secondary metabolites from Bacillus having antifungal activity are chemically and structurally described giving details of their action against several phytopathogens. Knowing the current status of Bacillus secreted antifungals is the base for the goal to apply these in agriculture and it is addressed in depth in the second part of this review.


Assuntos
Antifúngicos , Bacillus , Microbiologia Industrial , Controle Biológico de Vetores , Doenças das Plantas , Humanos , Agricultura/métodos , Agricultura/tendências , Antifúngicos/metabolismo , Bacillus/genética , Bacillus/metabolismo , Fungicidas Industriais/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Produtos Agrícolas/microbiologia , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências , Família Multigênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...